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A B S T R A C T

The APOE4 protein affects the primary neuropathological markers of Alzheimer's disease (AD): amyloid plaques,
neurofibrillary tangles, and gliosis. These interactions have been investigated to understand the strong effect of
APOE genotype on risk of AD. However, APOE genotype has strong effects on processes in normal brains, in the
absence of the hallmarks of AD. We propose that CNS APOE is involved in processes in the normal brains that in
later years apply specifically to processes of AD pathogenesis. We review the differences of the APOE protein
found in the CNS compared to the plasma, including post-translational modifications (glycosylation, lipidation,
multimer formation), focusing on ways that the common APOE isoforms differ from each other. We also review
structural and functional studies of young human brains and control APOE knock-in mouse brains. These ap-
proaches demonstrate the effects of APOE genotype on microscopic neuron structure, gross brain structure, and
behavior, primarily related to the hippocampal areas. By focusing on the effects of APOE genotype on normal
brain function, approaches can be pursued to identify biomarkers of APOE dysfunction, to promote normal
functions of the APOE4 isoform, and to prevent the accumulation of the pathologic hallmarks of AD with aging.

1. Introduction

For the past 25 years, a great deal of research has examined APOE
genotype in the context of its profound effect on the risk of Alzheimer's
Disease (AD) (Strittmatter et al., 1993). In this time, a literature has also
developed on APOE genotype in the context of normal brain function
(Di Battista et al., 2016; Iacono and Feltis, 2019; Wisdom et al., 2011).
Knowledge of the effects of APOE genotype prior to AD could provide
insight into normal cognitive strengths and weaknesses of individuals
based on their APOE genotypes as well as their later risks of cognitive
dysfunctions. As more people make use of commercial DNA sequencing
tools (Campion et al., 2019) and discover their APOE genotypes at
young ages, public interest in the effects of APOE genotype throughout
life will increase.

Knowledge of the effects of APOE genotype in the brain is based in
part on its effects on neural dysfunction. In addition to the long history
with late onset AD (Raber et al., 2004), APOE associations been ob-
served in other conditions, such as risk of Diffuse Lewy Body Disease
(Hansen et al., 2019), recovery from traumatic brain injuries (TBI)
(Kassam et al., 2016; Merritt et al., 2018), recovery from stroke (Cramer
et al., 2012; Wagle et al., 2009), and risk of cognitive impairment after
chemotherapy (Buskbjerg et al., 2019; Mandelblatt et al., 2018) or HIV
infection (Chang et al., 2014). These various findings are supported in
preclinical studies, including mouse models of TBI (Main et al., 2018),

stroke recovery (Lei et al., 2012), and chemotherapy-induced cognitive
impairment (Speidell et al., 2019). These conditions support a model in
which APOE genotype effects in normal brain create conditions that
make adverse responses to injury more likely (Mahley and Huang,
2012). In this context, aging can be considered a condition of accu-
mulating brain damages that are affected by APOE genotype: popula-
tions of the oldest old show increased prevalence of the APOE2 allele
and decreased prevalence of the APOE4 allele (Garatachea et al., 2015;
Rebeck et al., 1994; Revelas et al., 2018; Schachter et al., 1994;
Sebastiani et al., 2019).

Our overall hypothesis is that CNS APOE is involved in processes in
the normal brain that in later years apply to processes of AD patho-
genesis. In normal brain, these processes are related to clearance of
debris for homeostasis, inhibition of inflammation, and promotion of
neuronal network resilience (Fig. 1A). In AD brain, these processes are
related to clearance of Aβ oligomers, glial activation in response to
protein aggregates, and neuronal dysfunction and death (Fig. 1B).

In this review, we will first consider the APOE protein that is present
in the central nervous system (CNS); this form differs in important ways
from APOE found in the periphery. We will then synthesize data on the
effects of APOE genotype on brain structure and function in the absence
of signs of AD pathogenesis. Finally, we will speculate on ways that the
structure of CNS APOE could be related to some of the observed effects
of APOE genotype on CNS structure and function. These observations of
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how APOE genotype predisposes brains to damage are particularly
important because they will direct the development of prevention
methods for conditions such as AD. Furthermore, they will help in the
targeted identification of biomarkers that can be used to test prevention
approaches that do not rely on the phenotypes observed in the later
stages of AD, such as cognitive impairment and the accumulations of
the pathogenic proteins Aβ and phospho-tau.

2. CNS APOE protein structure

APOE is present both in the CNS and in the periphery, although the
structure of the protein is different in these two systems. The mature
APOE protein is 299 amino acids with a single amino acid substitution
defining each of the three common isoforms: APOE2 (Cys112, Cys158),
APOE3 (Cys112, Arg158) and APOE4 (Arg112, Arg158) (Rall Jr. et al.,
1982) (Fig. 2). The rare Christchurch variant consists of a Ser136 var-
iant (Wardell et al., 1987). APOE has three main domains: an N-term-
inal, four helix, receptor binding domain; a C-terminal, triple helix,
lipid binding domain; and an intervening flexible hinge region (Chen
et al., 2011; Lalazar et al., 1988; Nguyen et al., 2010; Sakamoto et al.,
2008). In the periphery, APOE is synthesized and secreted by hepato-
cytes (Mahley, 1988) and macrophages (Kockx et al., 2008), and is
involved in the HDL, exogenous, and endogenous cholesterol metabo-
lism pathways. It associates with a wide array of varied lipoproteins,
ranging from small (7–14 nm) plasma HDL particles (Otvos, 2002) to
the larger (30–100 nm) and polyhedral VLDL particles (Yu et al., 2016),
to the very large (75–1200 nm) chylomicrons (Dawson and Rudel,
1999; Mahley and Ji, 1999; Patsch, 1998). It functions in the transport
of lipoproteins and regulation of plasma lipid levels, with additional
functions such as immune modulation (Bennet et al., 2007; Mahley,
1988; Sing and Davignon, 1985; Tenger and Zhou, 2003; Vitek et al.,

2009).

2.1. APOE CNS lipoproteins

APOE is the most abundant apolipoprotein in the brain, although
other apolipoproteins are also present, including abundant APOA-I and
less abundant apolipoproteins including APOA-II, APOA-IV, APOJ,
APOD and APOH (Roher et al., 2009; Wang and Eckel, 2014). In the
CNS, APOE is primarily expressed by astrocytes and to a lesser extent by
pericytes, oligodendrocytes, choroid plexus, and neurons under stressed
physiological conditions (Achariyar et al., 2016; Bruinsma et al., 2010;
Nelissen et al., 2012; Pitas et al., 1987a; Xu et al., 2006). APOE is se-
creted by glia associated with lipids forming small (8–15 nm) discoid
particles, which increase in size, becoming spherical as they accumulate
lipids and flow into the CSF (12–20 nm with a fraction up to 30 nm)
(Koch et al., 2001; LaDu et al., 1998; Pitas et al., 1987b). APOE lipo-
proteins produced in the choroid plexus are secreted directly into the
CSF (Achariyar et al., 2016).

CNS APOE secretion and lipidation occurs in conjunction with the
ATP binding cassette (ABC) proteins, ABCA1 and ABCG1 (Courtney and
Landreth, 2016). These proteins are embedded in the cell membrane
and act to pump lipid molecules into the extracellular space, where they
bind apolipoproteins such as APOE and APOA-I (Tall, 2018). Like
APOE, the expression of ABCA1 and ABCG1 is increased by the tran-
scription factor LXR (either directly (Xu et al., 2013) or indirectly (Fan
et al., 2018)) to promote APOE and lipid efflux (Courtney and Landreth,
2016). ABCA1 activity can also be increased through binding of specific
peptides based on the sequences of APOA-I (Sherman et al., 2010) or
APOE (Bielicki, 2016), leading to increased lipidation of APOE (Boehm-
Cagan et al., 2016a; Chernick et al., 2018).

The three APOE isoforms, APOE2, APOE3, and APOE4, have

Fig. 1. APOE functions in normal brain are reflected in functions in AD brain. Secreted lipoproteins containing modified APOE are indicated as a yellow disk holding
the APOE protein with two representative glycans. This CNS lipoprotein interacts with a variety of CNS cells to 1) clear debris through binding to molecules at the
surface of the endothelial cells and basement membrane along CNS blood vessels (in red) and to CNS glia (in green); 2) inhibit activation of glia through signaling
through cell surface receptors; and 3) promote neurite outgrowth and dendritic spine formation on neurons (in blue). In the AD brain, these functions act to promote
clearance of Aβ monomers and oligomers (small collections of circles), to promote anti-inflammatory processes in response to Aβ plaques (round collection of circles
containing APOE molecules), and to slow intracellular neurofibrillary tangle formation (black curved lines) and propagation. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Structural components of APOE isoforms. The
299 amino acid APOE protein consists of an N-
terminal receptor-binding domain and a C-terminal
lipid-binding domain (light orange) with an inter-
vening flexible hinge region (green). The schematic

also shows amino acids 112 and 158 (red) which determine APOE2, APOE3 and APOE4 status, and the rare Christchurch mutation at amino acid 136 (yellow).
Glycosylation sites are in purple. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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different levels of lipidation and related functions. In CSF from both
middle aged and older cognitively normal individuals, those who car-
ried an APOE4 allele had significantly smaller APOE containing particle
distributions compared to those without an APOE4 allele, and APOE2.3
individuals had significantly larger APOE particle distributions
(Heinsinger et al., 2016). In a study of viral construct expression of
APOE2, APOE3 or APOE4, the APOE4 protein promoted the develop-
ment of less lipidated APOE particles while APOE2 was more highly
lipidated (Hu et al., 2015). A consistent isoform effect on lipidation is
apparent in the related function of lipid efflux: APOE2 promoted sig-
nificantly more lipid efflux from both astrocytes and neurons compared
to APOE3, which promoted more lipid efflux than APOE4 (Michikawa
et al., 2000; Minagawa et al., 2009). Complete APOE lipidation alters
the hinge region movement for access to the N-terminal receptor
binding domain, according to APOE-lipid binding models (Chen et al.,
2011). Thus, the level of lipidation of each APOE isoform is essential,
not only for efficiency of lipid transport, but also for downstream effects
involving receptor-binding interactions.

The C-terminal of APOE, from amino acid 244 onwards (from
middle of Helix C2 (Chen et al., 2011)), critically affects any lipoprotein
binding, driving APOE isoform specificity (Minagawa et al., 2009;
Nguyen et al., 2010; Sakamoto et al., 2008; Westerlund and Weisgraber,
1993). Lipid binding differences of APOE isoforms are observed in the
periphery, with APOE3 binding preferentially with the more protein-
rich HDL while APOE4 binds more effectively to the lipid-rich VLDL
particles (Minagawa et al., 2009; Nguyen et al., 2010; Sakamoto et al.,
2008; Weisgraber, 1990). Isoform-dependent lipoprotein binding pre-
ference is due to the APOE4 protein being more dependent on the C-
terminal region (273–299) for binding than APOE3 (Nguyen et al.,
2010; Sakamoto et al., 2008). Variations within the most C-terminal
region of the APOE4 molecule are therefore more likely to have an
impact on its lipid binding properties.

APOE self-association may be another important binding-related
property for CSF lipoproteins. Unlipidated APOE monomers form
multimers including dimers and tetramers, and APOE can further ag-
gregate to form fibrils. Although there is no major difference in the
overall quaternary structure or stability of APOE tetramers between
isoforms using a range of techniques (Garai and Frieden, 2010; Raulin
et al., 2019; Wang et al., 2019), APOE4 has slight differences in two
helical regions (amino acids 12–20 and 204–210) which may result in
the reduced formation of tetramers (Chetty et al., 2017). These data
indicate that isoform differences in tetramers are more associated with
number rather than structure. There are also differences in binding
domains and larger structures. The APOE4 molecule has been shown to
again rely on the C-terminal domain for self-association: when amino
acids 273–299 are removed self-association is lost in APOE4 but not
APOE3, and APOE4 creates more homo-isomers than APOE3 (Sakamoto
et al., 2008). Purified recombinant unlipidated APOE4 forms large
oligomers that create fibril-like structures over time; APOE2 and APOE3
make these structures to a lesser degree over the same timeframe
(Hatters et al., 2006; Raulin et al., 2019). The reduced HDL binding
affinity of APOE4 may result in a larger proportion of unlipidated APOE
that is more likely to aggregate (Hatters et al., 2006). The APOE4 large
aggregates are more toxic to neurons than APOE2 and APOE3 ag-
gregates (Hatters et al., 2006). Normal self-association up to tetramers,
however, may be important for the construction of large complexes,
with lipoprotein particles able to hold at least two APOE proteins (Chen
et al., 2011; Minagawa et al., 2009; Raussens et al., 2005). Conse-
quently, changes in the C-terminal region of APOE4 may not only im-
pact lipid-binding but also healthy oligomer formation.

The APOE isoform differences are at positions 112 and 158 in the N-
terminal domain. They are cysteine-arginine substitutions, altering both
the charge of the protein and its ability to form cysteine-cysteine dimers
(Mahley, 1988). Indeed, APOE4 contains no cysteine residues
throughout the protein. Through the cysteine 112 residue, APOE can
form disulfide bonds with other APOE proteins and with APOA-II

proteins (Weisgraber and Shinto, 1991). As expected, CNS APOE3 iso-
forms in brain and CSF form APOE-APOE and APOE-APOA-II dimers,
while APOE4 isoforms do not (Elliott et al., 2010; Rebeck et al., 1998),
although the levels in CSF are much lower than in plasma (Weisgraber
and Shinto, 1991). Dimerization at the cysteine 112 site in APOE3
negatively affects its interaction with HDL (Weisgraber, 1990), con-
sistent with the existence of only HDL-like particles in the CSF. Levels of
plasma APOE3 homo- and heterodimers correlate with HDL levels
(Yamauchi et al., 2017).

2.2. APOE protein levels in the CNS

Individuals that express APOE4 have lower levels of APOE in the
CNS than those that express APOE3. Some of these data derive from the
study of APOE targeted replacement (APOE TR) mice (Riddell et al.,
2008; Sullivan et al., 2011; Vitek et al., 2009). These mice express APOE
alleles from the endogenous mouse APOE promoter (Sullivan et al.,
1997), with the expected glial expression of APOE isoforms (Sullivan
et al., 2004). This glial expression pattern is consistent with the ob-
servations from a mouse model of GFP expression under the mouse
APOE promoter (Xu et al., 2006). APOE4 TR mice have the lowest levels
of APOE and APOE2 TR mice the highest APOE levels in: frontal cortex
brain extracts (Riddell et al., 2008; Ramaswamy et al., 2005) hippo-
campus brain extracts (which had overall more APOE than the frontal
cortex (Riddell et al., 2008)); CSF (Fryer et al., 2005; Riddell et al.,
2008), and interstitial fluid (Ulrich et al., 2013). Primary astrocytes
grown alone show these same trends with APOE4 astrocytes exhibiting
reduced APOE secretion compared to APOE3 astrocytes (Riddell et al.,
2008).

Findings in the APOE TR mouse model are supported by studies in
humans, with APOE2 alleles having a positive impact on APOE protein
concentration in the CSF and APOE4 alleles having a negative impact.
The CSF from APOE2.3 individuals had the highest levels of APOE, and
APOE3.4 and APOE4.4 individuals had the lowest levels (Cruchaga
et al., 2012). This same trend has been found in other analyses of CSF
APOE concentration (Castellano et al., 2011). A genome wide associa-
tion study has shown that APOE genotype has a strong
(p = 6.9 × 10−13) association with CSF protein level and no other SNP
reached genome wide significance (Cruchaga et al., 2012). Finally,
astrocytes derived from lines of inducible pluripotent stem cells also
demonstrated higher levels of cellular and secreted APOE3 than APOE4
(Lin et al., 2018).

2.3. APOE glycosylation

APOE is an O-glycoprotein that was initially shown to hold glyco-
sylation at a site in the hinge region (Thr194) (Wernette-Hammond
et al., 1989), but has since been shown to also hold glycosylation at
sites within the N-terminus (Thr8 and Thr18), the C-terminus (Thr289,
Ser290 and Ser296), and at a second site (at low abundance) within the
hinge region, Ser197 (Flowers et al., 2019; Halim et al., 2013; Lee et al.,
2010; Nilsson et al., 2009; Steentoft et al., 2011). Although identifica-
tion of the attached glycan is a more technical challenge, APOE holds
predominately monosialylated (Neu5Acα2–3Galβ1–3GalNAcα1-) and
disialylated (Neu5Acα2–3Galβ1–3(Neu5Acα2–6)GalNAcα1-) core 1 O-
glycan structures (Flowers et al., 2019). APOE in the cell is more
heavily glycosylated than the secreted forms (Lee et al., 2010; Zannis
et al., 1986) and APOE from the CSF is more highly glycosylated
compared to APOE isolated from the plasma (Flowers et al., 2019; Pitas
et al., 1987b; Rebeck et al., 1998). Normal human CSF holds ten times
more abundant glycosylation within the C-terminal lipid-binding do-
main (CSF 37.8%, Plasma 3.7%), and also holds a higher proportion of
larger disialylated core 1 glycans compared to plasma derived APOE
(Flowers et al., 2019). Plasma APOE, on the other hand, holds greater
glycosylation on the N-terminal domain sites (CSF 0.2%, Plasma
15.8%). Finally, while the hinge domain glycosylation was more similar
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for both plasma and CSF derived APOE, the CSF APOE held more
abundant glycosylation (CSF 26.8%, 11.4% plasma) (Flowers et al.,
2019). These analyses have important implications for the binding
properties of the APOE from these two compartments, with plasma
APOE holding little glycosylation in the C-terminal lipid domain and
having a more diverse lipoprotein binding profile. The CSF APOE, on
the other hand, binds only the small HDL particles and has higher
abundance of C-terminal glycosylation. These observations suggest that
C-terminal APOE glycosylation may tailor the disparate lipoprotein
binding requirements in the two compartments. In support of this hy-
pothesis, when sialylation was removed from APOE with a neur-
aminidase that removes α2–3 linked and α2–6 linked Neu5Ac (the
linkages since confirmed to be common on APOE (Flowers et al.,
2019)), the de-sialylated APOE binding to HDL was more detrimentally
impacted than VLDL binding (Marmillot et al., 1999). This binding
deficit was then rescued by the re-addition of sialic acid, confirming the
importance of complete normal glycosylation including sialylation to
effective HDL binding (Marmillot et al., 1999).

Glycosylation differences have been shown by two-dimensional
electrophoresis under certain physiological conditions and with APOE
genotype. Cells stably expressing APOE under a CMV promoter when
loaded with cholesterol showed decreased APOE secretion, and de-
creased APOE sialylation (Kockx et al., 2012). It is unknown whether
the APOE2, APOE3, or APOE4 variants differ in specific aspects of
glycosylation in the brain. Brain samples solubilized sequentially in
Tris-buffered saline (TBS) and then 1% Triton X-100, to separate so-
luble and membrane associated fractions, showed that APOE4 brains,
both mouse and human, held more soluble higher molecular weight
APOE compared to the APOE3 brain samples (DiBattista et al., 2016).
Isoelectric focusing of the two fractions showed differences in a series of
post-translation modifications, indicating that APOE O-glycosylation is
associated with the more soluble forms of APOE in the brain (DiBattista
et al., 2016). Interestingly, these modifications were also linked to
neuron health: when APOE4 TR mice were treated with an non-ster-
oidal anti-inflammatory drug, soluble, glycosylated APOE decreased
and neuronal dendritic spine density increased (DiBattista et al., 2016).

The structural differences in APOE isoforms are outlined in Fig. 2,
highlighting the regions that are affected by genetic variation, the lipid-
and receptor-binding domains, and the glycosylation sites.

3. CNS APOE genotype effects

The functional consequences of the different APOE isoforms in the
CNS can be inferred from the effects of APOE genotype on cognition and
behavior before the onset of AD. However, the APOE4 allele is asso-
ciated with an earlier appearance of amyloid as determined by amyloid
PET scans (Jansen et al., 2015) and more amyloid as defined in post-
mortem studies (Rebeck et al., 1993; Schmechel et al., 1993), consistent
with its correlation with an earlier age of onset of AD (Corder et al.,
1993). A meta-analysis of Alzheimer's Disease Neuroimaging studies
showed that very many APOE4-positive control individuals have posi-
tive amyloid PET scans by age 60 (Jansen et al., 2015). Thus, it is likely
that studies of control individuals middle-aged or older include the
effects of both amyloid and APOE4 genotype on brain structures and
function. Thus, in this review, we will focus on studies of young human
populations, and on mouse models with normal brain APOE regulation
and without engineered AD pathological processes.

3.1. Human studies

3.1.1. Brain structure
There is a mixed literature on whether APOE genotype affects

normal grey matter structure in younger individuals as evaluated by
Magnetic Resonance Imaging (MRI) (Alexopoulos et al., 2011; Dennis
et al., 2010; DiBattista et al., 2014; Filippini et al., 2009b; Matura et al.,
2014; O'Dwyer et al., 2012b). Several recent studies show no APOE

genotype-dependent effects in very young populations (Bussy et al.,
2019; Lyall et al., 2019; Lyall et al., 2013; Wisdom et al., 2011; Zheng
et al., 2017). Effects may be limited to specific hippocampal sub-
structures, e.g., entorhinal cortex, or they may change substantially
with normal development. Different effects associated with the APOE4
allele have been reported in small medial temporal lobe structures in
infants, children, and young adults (Chang et al., 2016; Dean 3rd et al.,
2014; Knickmeyer et al., 2014; O'Dwyer et al., 2012a; Shaw et al.,
2007). White matter microstructure, as measured by fractional aniso-
tropy and white matter intensities, is impaired in APOE4 carriers
compared to non-carriers (Heise et al., 2011; Lyall et al., 2019; Westlye
et al., 2012), consistent with potential APOE4-related problems with
brain connectivity and activity.

3.1.2. Brain activity
Blood Oxygen Level Dependent (BOLD) contrast imaging in func-

tional MRI is a measure of brain activity. Resting brain activity, ana-
lyzed through co-activation of the default mode networks (DMN),
showed that young APOE4 individuals have higher co-activations that
include the medial temporal lobe than young APOE3 individuals
(Filippini et al., 2009a; Shen et al., 2017). APOE genotype effects on the
DMN are not only related to APOE4, but include effects of APOE2 as
well (Trachtenberg et al., 2012). These effects on the DMN may be
related to differences in spontaneous brain activity (Zheng et al., 2017)
or lower functional connectivity (Su et al., 2017). During active en-
coding tasks, APOE genotype is also associated with altered medial
temporal lobe activity with increased BOLD signal in young carriers of
the APOE4 allele compared to non-carriers (Dennis et al., 2010; Evans
et al., 2017; Filippini et al., 2009a). An increased hippocampal activity
in APOE4 carriers compared to non-carriers occurred in the cognitive
generation of grid-cell-like representations (Kunz et al., 2015); this
signal correlates with cerebrovascular reactivity to CO2 (Suri et al.,
2015). In contrast to increased activity during encoding tasks, APOE4-
positive individuals showed decreased medial temporal lobe activity
during executive attention compared to APOE4-negative individuals,
which is a task dependent on frontal lobe activation (Green et al.,
2014). Thus, in the unimpaired brain, APOE4 is associated with higher
levels of medial temporal lobe activity during resting state as well as
during functions that depend on its efficient function.

Several studies have identified differences in measures of brain
utilization of glucose and oxygen dependent on APOE genotype, sup-
porting a model with APOE4-positive individuals are unable to effi-
ciently regulate cerebral metabolism compared to APOE4-negative in-
dividuals (Brandon et al., 2018). The FDG PET measure of glucose
uptake was lower in APOE4 individuals in posterior cingulate, parietal,
temporal and prefrontal cortex (Reiman et al., 2004). Post-mortem
analysis of brains from young individuals show APOE genotype had
several effects on levels of brain glucose and lactate transporters, and
on mitochondrial electron transport proteins (Perkins et al., 2016). The
lower glucose metabolism associated with APOE4 may cause alterations
in specific brain activities, or the lower energy metabolism may be
caused by alterations in brain activities from other APOE4-related ef-
fects.

3.1.3. Behavior
Differences in brain activity and connectivity, particularly related to

structures in the medial temporal lobe, may affect behaviors. However,
there is a lack of consensus on behavioral effects of APOE genotype in
young individuals. Compared to non-APOE4 carriers, young APOE4
carriers perform better in tasks of executive function, verbal fluency
and memory (Jochemsen et al., 2012; Mondadori et al., 2007; Rusted
et al., 2013). APOE4 individuals have altered navigational behavior,
consistent with differences in grid cell-like activity (Kunz et al., 2015)
and decreased associative memory (Bussy et al., 2019), compared to
individuals without APOE4. A meta-analysis from 2011 concluded that
APOE4 was associated with worse measures of episodic memory and
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global cognitive ability (Wisdom et al., 2011), although many of those
studies included older individuals, when APOE4-related impairments
increase (Rusted and Carare, 2015; Wisdom et al., 2011), thus poten-
tially lessening the magnitude of direct cognitive effects of APOE4
(Reinvang et al., 2013).

3.2. Mouse APOE knock-in model studies

Studies of mouse models of APOE complement human studies, al-
lowing more genetically and environmentally controlled experiments
(although in the absence of important factors relevant to human dis-
ease). Normal expression of specific human APOE isoforms in AD mouse
models (e.g., EFAD mice (Youmans et al., 2012)), are useful in under-
standing how APOE genotype affects processes such as the deposition of
Aβ (Youmans et al., 2012) or inflammatory responses to its accumu-
lation (Rodriguez et al., 2014), and how APOE-related treatments alter
AD pathologies (Safieh et al., 2019). However, here we will consider the
effects of APOE genotype in mice lacking overt AD pathological
changes, comparing mice expressing only APOE4 with those expressing
only APOE3.

3.2.1. Brain structure
The ease of collection of mouse brain tissue has allowed detailed

studies of microscopic neuronal structures. These studies have con-
sistently revealed that APOE4mice have simpler structures compared to
APOE3 mice. As demonstrated with Golgi stain analyses, APOE4 mice
had simpler neuronal dendritic arborization in the amygdala (Wang
et al., 2005), cortex (Dumanis et al., 2009; Neustadtl et al., 2017), and
hippocampus (Maezawa et al., 2006), including less branching or re-
duced spine densities. Decreased complexity of neurons in APOE4
brains is also seen in the entorhinal cortex (DiBattista et al., 2016;
Rodriguez et al., 2013), consistent with the altered function of that
brain region in humans (Kunz et al., 2015). In older mice, APOE4 is
associated with fewer inhibitory neurons in the hippocampus
(Andrews-Zwilling et al., 2010). APOE4 brains have a lower vascular
density, associated with white matter damage (Koizumi et al., 2018)
and smaller hippocampal regions (Speidell et al., 2019). Importantly,
some structural effects can be modified in ways that make APOE4 mice
more like APOE3 mice in terms of neuronal complexity, for example
with the anti-inflammatory agent ibuprofen (DiBattista et al., 2016).

3.2.2. Brain activity
The ease of collection of mouse brain tissue has also allowed cellular

studies of neuronal activity and synaptic measures. The electro-
physiology of amygdala neurons showed reduced excitatory transmis-
sion in APOE4 mouse brain (Wang et al., 2005). There are lower levels
of inhibitory tone of the APOE4 entorhinal cortex (Nuriel et al., 2017)
and hippocampal hilus (Andrews-Zwilling et al., 2010). Evoked release
of acetylcholine of hippocampal neurons is lower in older APOE4 mice
(Dolejsi et al., 2016). Effects of APOE genotype on hippocampal neu-
rotransmission could account for fewer short wave ripples and reduced
slow gamma wave activity in aged APOE4 mice (Gillespie et al., 2016).
Thus, there are changes to neuronal activity concomitant with the
changes to neuronal structures seen in APOE4 mice.

The molecular processes behind these effects of APOE genotype on
neuronal activities remain to be defined, but there are many effects of
the endogenous APOE protein on intracellular signaling processes (Hoe
et al., 2005; Huang et al., 2017; Lane-Donovan and Herz, 2017). Pre-
synaptically, APOE4 mice show lower glutaminase levels (Dumanis
et al., 2013) and altered levels of the vesicular glutamate transporter 1
(Boehm-Cagan and Michaelson, 2014; Dumanis et al., 2013) compared
to APOE3 mice. Effects of APOE4 on neuronal activity could be medi-
ated by its effects on the family of low density lipoprotein receptors,
such as ApoER2 (Beffert et al., 2004; Weeber et al., 2002). APOE4 mice
have lower levels of ApoER2 in the CA1 and CA3 neurons of the hip-
pocampus (Boehm-Cagan et al., 2016b; Gilat-Frenkel et al., 2014).

These in vitro and in vivo studies combine to demonstrate that APOE
isoforms differentially affect neuronal cell signaling.

3.2.3. Behavior
Effects of APOE genotype on mouse brain structure and activity are

reflected in numerous behavioral assays. It is important to reiterate that
the APOE-driven differences in behavior reviewed here occur in the
absence of pathological changes introduced by transgenes or exogenous
agents, and thus do not reflect the effects of gross AD pathological
changes. Compared to APOE3 mice, APOE4 mice are impaired in spatial
learning as measured in the Barnes maze (Rodriguez et al., 2013;
Speidell et al., 2019), the Morris Water Maze (Boehm-Cagan and
Michaelson, 2014; Bour et al., 2008; Knoferle et al., 2014; Salomon-
Zimri et al., 2014), and Novel Place Recognition (Grootendorst et al.,
2005). They are impaired in other memory related pathways, as evi-
denced by Novel Object Recognition (Boehm-Cagan and Michaelson,
2014; Salomon-Zimri et al., 2014), Contextual Fear Conditioning
(Boehm-Cagan and Michaelson, 2014; Salomon-Zimri et al., 2014;
Segev et al., 2013) and Y-maze active avoidance (Bour et al., 2008).
Several studies demonstrated that deficits were particularly observed in
older APOE4 mice (Andrews-Zwilling et al., 2010; Bour et al., 2008),
which would be consistent with the increased risk of AD in older in-
dividuals. These behaviors present opportunities to alter APOE4-asso-
ciated phenotypes in the absence of AD pathological changes, relevant
for the generation of early prevention approaches. For example GABA
potentiation alleviated APOE4-related behavioral deficits in the Morris
Water Maze (Andrews-Zwilling et al., 2012), and deficits in Morris
Water Maze and Novel Object Recognition were alleviated by bexar-
otene (Boehm-Cagan and Michaelson, 2014) and an ABCA1 agonist
(Boehm-Cagan et al., 2016b).

Thus, human and mouse studies are consistent in their findings that
the APOE4 genotype affects the activity and function of the hippo-
campus, reflected in behavioral differences. These effects may lead to,
or be exacerbated by, the presence of the various pathological changes
later in life.

4. CNS APOE structure-function relationships

The effects of APOE genotype on APOE protein, APOE levels, brain
structure, and brain function in normal brains are logical targets for
studies on the prevention of brain dysfunction in AD (Yamazaki et al.,
2016). However, linking measures in the normal brain to prevention of
later AD-associated symptoms is a difficult task (Gomez-Isla and Frosch,
2019).

Increasing APOE levels could aid in the clearance of debris, in-
hibition of inflammation, and delivery of lipids to neurons for increased
resilience (Fig. 1). APOE levels are increased through activation of
various transcription factors related to lipid homeostasis (Cao et al.,
2007). APOE levels are further affected by recycling through neuronal
endocytic pathways, with deficits in this recycling evidenced with
APOE4 (Heeren et al., 2004; Xian et al., 2018). Through interactions
with APOE receptors, APOE can promote neural complexity (Lane-
Donovan and Herz, 2017), reduce inflammation (Pocivavsek et al.,
2009), and promote debris clearance (Rasmussen et al., 2018). Im-
portantly, APOE and APOE-derived peptides have anti-inflammatory
effects (Laskowitz et al., 2017; Vitek et al., 2012) through interactions
with the family of lipoprotein receptors; increasing APOE functionality
could address the connections of pathological changes (Perez-Nievas
et al., 2013) and genetics (Malik et al., 2015) with inflammation.

Increasing APOE lipidation in brain-specific HDL can be accom-
plished using ABCA1 agonists (Boehm-Cagan et al., 2016b) and perhaps
through altering C-terminal glycosylation events specific to the CNS
(Flowers et al., 2019). Chemical and thermal denaturation studies de-
monstrate that the APOE4 monomer tertiary structure is less stable and
less structured than APOE3 and APOE2, prone to a molten globule state
(Morrow et al., 2002; Ray et al., 2017). The altered folding of APOE4
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can be targeted with small molecules that stabilize APOE4 (Petros et al.,
2019) or prevent APOE domain interactions (Wang et al., 2018). More
stable and lipidated forms of APOE have conformations that also pro-
mote receptor interactions (Frieden et al., 2017).

5. Conclusions

The effects of APOE genotype on APOE modification, lipidation, or
levels could influence neuronal resilience, the time course or intensity
of neuroinflammation, and the homeostasis of extracellular hydro-
phobic molecules (Fig. 1A). These functions are the same ones that are
hypothesized to contribute to AD pathogenesis (Fig. 1B). Approaches to
address these properties of the APOE4 protein are being pursued to
treat or prevent the symptoms of AD (Safieh et al., 2019). These po-
tential treatments to address deficiencies in APOE4 positive AD patients
could be developed using assays in preclinical studies of normal mice
and humans. Some approaches may depend on beginning treatments in
advance of marked amyloid accumulation, since there may be adverse
effects of the form of APOE4, which is bound chronically to plaques
(Wisniewski and Frangione, 1992). Thus, assays need to be developed
to monitor characteristics of APOE and its effects in normal brain, such
as state of lipidation, basal inflammation, or ability to transport hy-
drophobic molecules. Ideally, these measures could be based on APOE
analyzed in the peripheral circulation, perhaps including studies of
glycosylated APOE isoforms that may pass from the CNS to the per-
iphery if the blood brain barrier is impaired. Overall, APOE-directed
studies under non-pathological conditions are necessary for testing
preventative approaches in this large population genetically at risk for
AD.
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